

5G-Drive and V2X Solution Results Achievements

Uwe Herzog
Eurescom

Xiaoyun Zhang Dynniq

Table of Content

- ▶ 5G-Drive Introduction
- Results and discussion
- ▶ Lessons learnt of joint EU-China V2X trials
- Outlooks of C-V2X in Europe

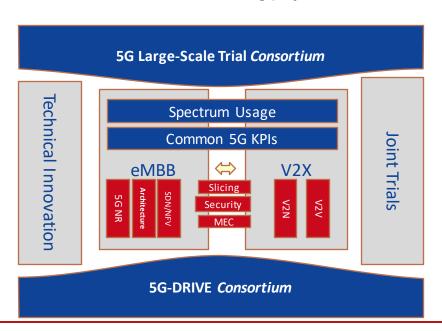
5G-DRIVE Project Objectives

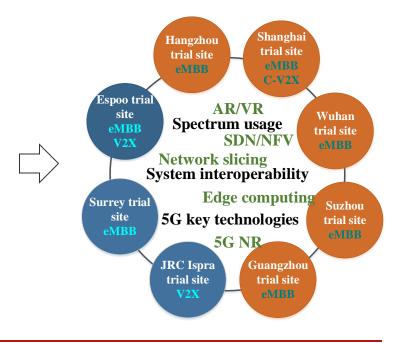
- ▶ Research and Innovation Action project, funded under the Horizon 2020 Framework programme, closely linked with 5G PPP.
- ▶ 5G-DRIVE aims to bridge current 5G developments in Europe and China through joint trials and research activities in order to facilitate technology convergence, spectrum harmonisation and business.

34 months (Sep-18 – Jun-21)

17 partners from 10 countries

- Germany
- Finland
- Belgium
- Italy
- Switzerland
- Poland
- Greece
- Portugal
- United Kingdom
- Luxembourg





EU-China 5G trial collaboration

- ▶ 5G-DRIVE collaborates with 5G Large-scale Trial project led by China Mobile
 - Cover from terminals, RAN, transport network, core network, and 5G services
 - ☐ 3 Trial sites in 5G-DRIVE
 - 5G trial cities in Chinese twinning project

Encapsulation of WP4

Motivation

- ▶ Redefine transportation, providing real-time, highly reliable/low latency data flows to enable C-ITS
- ▶ C-V2X paves the way to connected and automated mobility (CAM)
- ▶ C-V2X is initially defined as LTE-V2X in 3GPP Release 14, designed to operate in several modes, Ad-hoc communication via PC5 interface was introduced to D2D mode.

Objectives

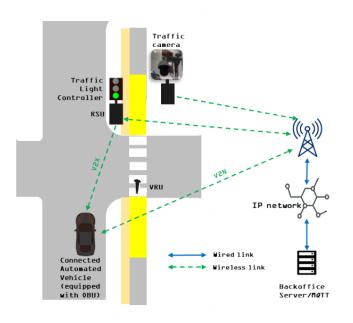
- To define Joint V2X use cases together with Chinese partners,
- ▶ To jointly trial and demonstrate these Joint use cases;
- To ensure the feasibility and compare performance of LTE-V2X (latency, comm. ranges, feasibility to support CAM via LTE-V2X enabled application)
- **...**

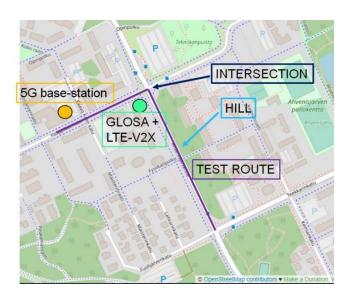
Results preview (see D4.4 end May 2021 version)

- Frequency jamming attacks and misbehaviour detection system tests
- ▶ Laboratory tests: 1) conformance tests on ITS-G5 and on LTE-V2X;2) coexistence tests
- Auxiliary studies and test
 - Simulation of V2X communication utilizing Mobile Edge Computing
 - Key V2X link budget parameters and on field trial results
 - ▶ Hybrid positioning for automated driving complemented by C-V2X comm.

Results preview and discussion (WP4 Joint EU-China C-V2X trial report)

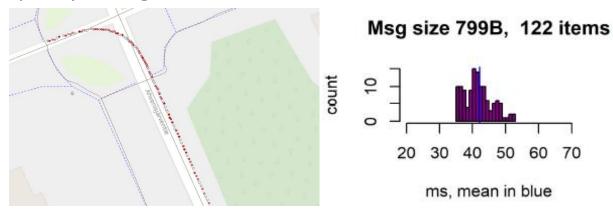
- Joint EU-China V2X trials in Europe (5G-Drive)
 - ▶ Initial quality testing (reliability) of LTE-V2X assisted connected and automated driving
 - ▶ Performance of LTE-V2X ← → impact factor 1: Number of LTE-V2X stations


impact factor 2: Vehicle speed


impact factor 3: Antenna height

- ► Featured joint EU-China use cases : two day-1 C-ITS services
 - ▶ Intersection safety (intelligent intersection with VRU crossing)
 - ► GLOSA (individual speed advice to C(A)V utilising LTE-V2X comm.)
- ▶ Joint EU-China V2X trials in China(5G Large-scale Trial)
 - ▶ Interoperability tests between different vendors
 - ▶ V2I/V2V coverage tests
 - ▶ LTE-V2X performance tests: two featured joint EU-China use cases among 17 day-1 C-ITS services
 - Intersection safety (intersection collision warning)
 - ▶ GLOSA

Trial architecture and setup description



Initial quality testing

Initial quality testing of LTE-V2X assisted connected and automated driving 24-25, Aug 2020

KPI	Msg Size	200B	400B	800B	1500B		
		5G late	5G latency (Server to Connected (Automated) Vehicle)				
Mean		37	44	46	36		
Jitter		101	132	117	93		
Lost msg		0	0	0	0		
LTE-V2X later		ncy (RSU to OBU on	Connected (Automa	ted) Vehicle)			
Mean		37	40	42	36		
Jitter		21	19	18	72		
Lost ms	Sg .	0	0	0	0		


Results discussion Joint EU-China V2X trials in Europe Performance test 1

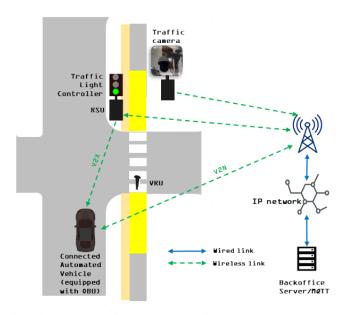
- ▶ Performance of LTE-V2X 9th Sep 2020
 - Assumption 1: the number of emulated stations can affect LTE-V2X average latency
 - ▶ Trial design 1: increase the number of emulated stations by decreasing the Msg interval

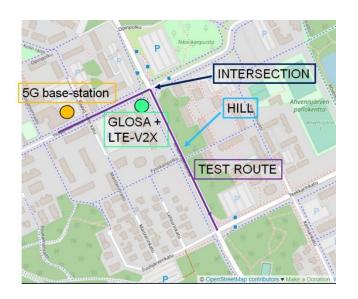
Msg Interval (ms)	1	5	10	20	50	150
# of stations	1000	200	100	50	20	~7
	5G latency (Server to Connected (Automated) Vehicle)					
mean	133	62	137	69	61	64
	LTE-V2X latency (RSU to OBU on Connected (Automated) Vehicle					
mean	32	28	25	25	24	24

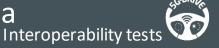
- Performance of LTE-V2X 24th Sep 2020
 - ▶ Assumption 2: Vehicle speed can affect LTE-V2X average latency
 - ▶ Trial design 2: increase driving speed between 10 ~ 40 km/hr
 - ▶ Result: Under urban driving condition and speed, impact on LTE-V2X latency is not observable

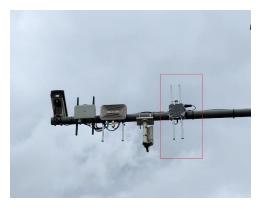
Driving (km/hr)	speed	10	20	30	40
		5G latency (Server to Connected (Automated) Vehicle)			
Mean (ms)		66	130	73	94
	LTE-V2X latency (RSU to OBU on Connected (Automated) Vehicle				
Mean (ms)		24	25	24	24

- ▶ Performance of LTE-V2X 22nd Oct 2020
 - ▶ Assumption 3: Antenna height can affect LTE-V2X average latency
 - ▶ Trial design 3: increase antenna height on RSU from 1.4 ~ 3.8 meters

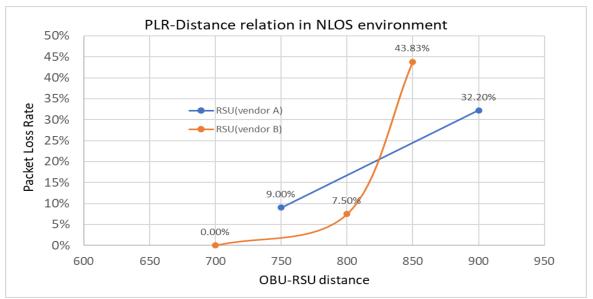





Antenna height (m)	1.4	2.8	3.8
Mean latency (ms)	35	30	26
Packet Loss Rate	32	19	9


- Featured joint EU-China use cases: two day-1 C-ITS services
 - ▶ Intersection safety (intelligent intersection with VRU crossing) 9th Sep 2020
 - ► GLOSA (individual speed advice to C(A)V utilising LTE-V2X comm.) 14~16 April 2021

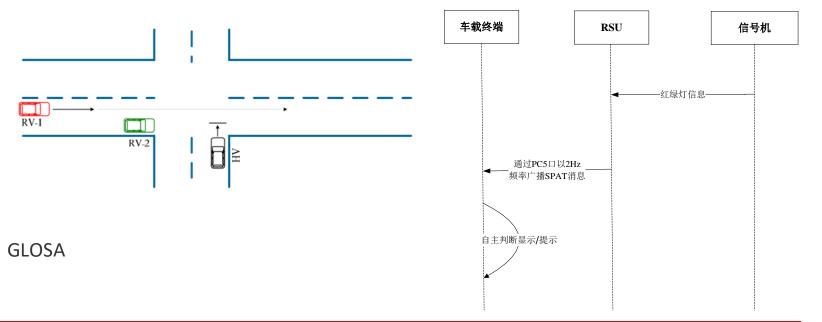
- Interoperability tests between different vendors
 - ▶ One RSU transmits SPaT and multiple OBUs from different vendors receive
 - ▶ One OBU transmits BSM and multiple RSUs from different vendors receive


The RSUs from different vendors are deployed on a light pole at the No. 51 intersection

The OBU is placed on the top of the test car.
The height of the antenna is about 1.5 m.

- ▶ V2I/V2V coverage tests
 - ▶ V2I (OBU–RSU) coverage test under NLOS
 - ▶ an OBU in a test vehicle was moving away from an RSU (installed ca. eight meters above ground level on a light pole)

- ▶ V2I/V2V coverage tests
 - ▶ V2V (OBU–OBU) coverage test under LOS and NLOS
 - Driving mode


Driving mode:	OBU–OBU	Latency mean	PLR
LOS/NLOS	distance [m]	[ms]	
Nearpoint	0	16.29	0%
Far point	400	15.5	0%

Fixed positions

Fixed position:	OBU–OBU	Mean latency	PLR
NLOS	distance [m]	[ms]	
	400	15.32	0%
	450	18.81	17%

- ▶ LTE-V2X performance tests
 - Intersection safety (intersection collision warning)
 - ▶ One OBU and One RSU latency ≤ 25 ms, PLR ≤ 10%
 - Twenty OBUs and RSUs latency ≤ 38 ms, PLR ≤ 10%

Lessons learned and Outlook

- ▶ Joint EU-China V2X trials: difficulties in the beginning of the collaboration but aligned by beginning of 2019.
- Pandemic impact and pandemic resilience plan
 - ▶ Former plan transferred to online format: joint EU-China V2X trial framework
 - Live streaming of demos
 - Joint work: report, publication and events
- Post-pandemic outlook
 - Online collaboration is the new norm.
 - ▶ Potentials of C-V2X is the basis for added value of future work
 - ▶ Seeking the penetration points of C-V2X development and rollout in Europe

Thank you for your attention!

Find us at www.5g-drive.eu

Twitter: @5GDRIVE

The research conducted by 5G-DRIVE receives funding from the European Commission H2020 programme under Grant Agreement N°814956. The European Commission has no responsibility for the content of this presentation.