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Abstract—With the arrival of the Internet of Things, many 
fragmented intelligent terminals unload data to the edge cloud for 
computing. Based on the background of the vehicle platooning 
assisted by the edge cloud server, this paper conducted the 
following research on the problem of computing task offloading:
First, considering the limited heterogeneous network resources of 
the Internet of Vehicles, the limited computing resources allocated 
by the edge cloud server for the vehicle platoon and member 
vehicle onboard computing unit, and the different delay 
constraints of the computing tasks, a computation offloading 
model was established with the optimization objective of reducing 
the total energy consumption of the platooning. Second, this paper 
used the proposed extended adaptive large neighbourhood search 
(EALNS) algorithm to optimize the offloading decision of 
computing tasks and used a method that enables computing tasks 
to be completed within the time delay constraint to optimize the 
allocation of computing resources. Finally, the EALNS and the 
generalized Benders decomposition algorithm were compared for 
energy optimization experiments. The experimental results
verified the EALNS algorithm's effectiveness in optimizing the 
platooning's total energy consumption in the task offloading 
decision-making process. 

Keywords—connected and automated vehicles; cooperative 
vehicle infrastructure; Computation Offloading; Extended Adaptive 
Large Neighbourhood Search  

I. INTRODUCTION 

With the rapid development of mobile communication 
technology and the widespread application of the internet of 
things (IoT), the era of IoT is bringing a whole new world. At 
the same time, the vehicle is undergoing critical changes, in 
which many smart mobile services are used, such as augmented 
reality[1], computer vision, and so on. These services require 
intensive communication and computation resources[2-4].

Cloud computing with high-powered computing capability has 
served as an effective approach to solving the conflict between 
resource-intensive applications and resource-constrained 
vehicles, where the tasks can be offloaded to the remote cloud 
servers from a vehicle[5-7]. However, the frequent interaction 
process between the vehicles and the remote cloud will increase 
the burden on the network, resulting in the blockage of the 
critical path of the core network, which cannot meet the 
increasing demand for low latency of the services. For this 
reason, mobile edge computing (MEC) is proposed as a 
promising solution, which pushes remote cloud services to the 
edge of the wireless network. Placing computing resources as 
close as possible to the terminal realizes context awareness and 
real-time computing capabilities.  

In recent years, research on edge computing has mainly 
focused on offloading technology, resource management 
technology, mobility management, and security and privacy 
protection technology. There is no clear boundary between edge 
computing offloading technology and other technologies. This
technology particularly focuses on improving system 
performance, such as reducing energy consumption or 
computing task completion time by optimizing offloading 
decisions and effectively allocating resources. Unlike the remote 
cloud, the edge cloud is limited by the external environment of 
the base station, and its own deployment cost, so distributed 
small-scale servers implement it. More fragmented smart 
terminals will be connected to the edge cloud for computing. 
The performance of traditional network methods on the Internet 
of Vehicles (IoV) will suddenly drop. Therefore, under the 
constraints of limited computing resources, limited network 
resources, and onboard application delays, reasonably 
optimizing the offloading of computing tasks and allocating 
computing resources to reduce the total energy consumption of 
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vehicles has become an important issue. This paper uses the 
vehicle platooning assisted by the MEC server as the research 
background to study computation offloading in the cooperative 
vehicle infrastructure system.

This article takes the vehicle platooning under the 
cooperative vehicle infrastructure system as the scene. The main 
research contents of this paper are as follows: First, this paper 
considers the limited heterogeneous network resources of IoV, 
the limited computing resources allocated by the MEC server to 
the vehicle formation, the limited computing resources of the 
onboard units (OBU) of member vehicles, and the different 
delay constraints of computing tasks. The offloading problem of 
cooperative computing tasks is modelled as an integer nonlinear 
programming model. Secondly, an extended adaptive large 
neighbourhood search algorithm (EALNS) is used for the 
computing task offloading decision. A method that enables the 
computing task to be completed within the time delay constraint 
is adopted for the computing resource allocation strategy. The 
paper minimizes the total energy consumption of the platooning 
by optimizing the offloading of computing tasks and allocating 
computing resources. Finally, the simulation experiment of 
vehicle-infrastructure collaborative computing task offloading 
based on EdgeCloudSim verifies the algorithm's effectiveness.

The remainder of this paper is structured as follows. Related 
work is introduced in Section 2. Model analysis of task 
offloading based on cooperative vehicle infrastructure system is 
described in Section 3. Computing task offloading decision 
based on extended adaptive large neighbourhood search 
(EALNS) is shown in Section 4. Section 5 presents the 
simulation results. The conclusion is mentioned in Section 6.

II. RELATED WORK

As a key technology and a new network computing 
paradigm to help 5G, edge computing has always been a hot 
issue of widespread concern. According to the research literature 
related to the computing offloading of IoV, the common edge 
cloud computing resources in IoV include (a) computing 
resources available to nearby vehicles, also called in-vehicle 
edge cloud computing resources; (b) computing resources 
available to the RSU server; (c) The computing resources 
available to the MEC server on the base station side.

For in-vehicle edge cloud computing resources, it integrates 
the computing resources of vehicles and provides computing 
services. Sun et al.[8] proposed an adaptive learning task 
offloading algorithm based on a multi-armed gambling machine. 
The candidate vehicles for each time slice are selected based on 
the historical time delay observation data to minimize the total 
completion time of the computing task in a period.

For the computing resources of the roadside unit (RSU)
server, due to the limitation of the communication distance 
between the vehicle and the RSU, it is necessary to consider 
switching the RSU connected to the vehicle. The calculation 
task may not be offloaded to the RSU server where the vehicle 
is located. Xu et al.[9] used the computing task offloading plan 
(the RSU server selection for each vehicle computing task) as a 
decision variable to minimize the total time loss and the energy 
consumption of all servers, and solved multi-objective 
constrained optimization problems by improving the NSGA-II 

algorithm. Yang et al.[10] considered that each vehicle has an 
in-vehicle application program containing many subtasks to 
execute, and proposed a location-based offload scheme. By 
considering the delay of each computing task and the constraints 
of RSU server computing resources, Zhang et al.[11] proposed 
a contract-based offloading server selection and computing 
resource allocation scheme to maximize the benefits of suppliers 
and improve the utility of vehicles. Dai et al.[12] aimed to 
minimize the task processing delay (including the vehicle's 
movement time from the starting point to the target RSU) and 
balance RSU server load. The mixed-integer nonlinear 
programming problem was transformed into selecting the 
offloading server for each vehicle computing task, determining 
the offloading ratio, and allocating server computing resources. 

The computing resources of the MEC server are usually 
divided into a single MEC server and multiple MEC servers of 
neighbouring base stations for collaborative computing. To 
optimize energy efficiency and service quality, Zhang et al.[13]
proposed a regionally coordinated IoV architecture based on 
Fog Computing. Four services were designed: mobility support 
and task migration, multi-source data collection, distributed 
computing and storage, and multi-path data transmission, which 
are used to process big data of smart city IoV. Wan et al.[14]
proposed an edge computing framework for IoV computing 
offloading under the 5G network architecture. By simplifying 
the computing resources to the number of virtual machines and 
the network resources to a fixed transmission rate, the problem 
is modelled as a multi-objective optimization problem, and the 
SPEA2 algorithm is used to solve the offloading scheme.

Edge cloud computing resources are usually limited, so the 
cloud edge collaborative computing model needs to be 
considered. Aiming to minimize the total duration of tasks and 
the cost of server computing resources, Zhao et al.[4] proposed 
a collaborative method based on MEC and cloud computing to 
convert the mixed integer programming problem into a 
computational offloading decision-making problem and a 
computing resource allocation problem. 

Vehicle formation has advantages such as reducing fuel 
consumption and road congestion and improving road safety, so 
it is currently the easiest business model for autonomous driving. 
Cui et al.[15] considered that the members of the vehicle 
platooning would generate an indivisible computing task in each 
time slot. They used the Lyapunov optimization algorithm to 
solve the calculation task offloading strategy. Ma et al.[16]
proposed a platoon-assisted vehicle edge computing (PVEC) 
system, which considers the multi-task offloading system for 
vehicles was leaving the formation.

Unlike the research mentioned above literature on 
computing task offloading, this article considers the idle 
computing resources of other members of the vehicle platooning 
and the limited computing resources allocated by the MEC 
server to the vehicle platooning. Our proposed schemes jointly 
optimize the computing task offloading scheme and the 
computing resource allocation scheme and aim to minimize the 
platoon's total energy consumption while considering the 
urgency of different computing tasks.
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III. SYSTEM MODEL

Instead of considering the computing resources of RSU and 
remote cloud, we consider the limited computing resources of 
the MEC server and other members of the platooning and the 
limited network resources of the heterogeneous IoV. This paper 
uses the cooperative vehicle infrastructure scenario of the 
integration of MEC and IoV to make offloading decisions on the 
calculation tasks of member vehicles (offloading to MEC server, 
local calculation, and offloading to another member of the 
platooning). In addition, this paper allocates the CPU computing 
resources to optimize the total energy consumption of the 
vehicle platooning under the premise of satisfying the time delay 
constraint of the computing task.

In the coverage area of a base station Radio Access Network 
(RAN) side, there is a vehicle platooning M= m|m=1,2...,M
with M member vehicles travelling on the road. On the Evolved 
Packet Core (EPC) side, a MEC server (m=0) is deployed near 
the base station. The member vehicles communicate through 
Vehicle to Vehicle(V2V), and the vehicles and the base station 
communicate through Vehicle to Network(V2N). The MEC 
server communicates with the base station through a high-speed 
wired optical fibre link. The computing task offloading scenario 
under a cooperative vehicle infrastructure system is shown in 
Fig. 1. In this scenario, we set that a MEC server and OBU of M
member vehicles can be called a computing unit.

According to the literature[4, 12, 14] and the characteristics 
of vehicle-infrastructure collaborative computing tasks, this 
paper proposes a computing task model for vehicle-mounted 
applications. Each member in the vehicle platooning has a 
calculation task to be calculated, and we assume that each 
vehicle requests only one type of calculation task at a time. We 
define the task unit (the smallest unit of the calculation task that 
can be divided) of the calculation task of the member vehicle m
as a tuple Wm= bm,γm,tm and bm represents the size of the input 
data volume of the task unit. We assume that the processing 
density of the calculation task is uniform. γm indicates the 
processing density of the input data of the task unit, or it can be 
considered the CPU calculation period required to process unit 
data. Its value depends on the specific type of vehicle-mounted 
application to which the computing task tuple belongs. tm
represents the delay constraint of the vehicle-mounted 
application to which the computing task belongs. This paper 
considers the urgency of different in-vehicle applications and 

takes the delay as a constraint to ensure the real-time and 
reliability of the IoV. In addition, the calculation energy 
efficiency of each member vehicle is ζm , that is, the energy 
consumed by each CPU calculation cycle of the vehicle to 
perform the calculation task. Its value depends on the CPU 
calculation frequency.

Assume that each member vehicle currently has a batch 
of tasks to be calculated, where the amount of tasks is αm. Each 
vehicle is equipped with two communication antennas, one is 
used for V2N communication with the base station, and the other 
is used for V2V communication with other member vehicles. 
Considering the real-time nature of the vehicle-mounted 
application of the IoV, the calculation task of the vehicle-
mounted application can be divided into three parts for 
distributed calculation: the number of tasks offloaded from the 
vehicle m to the MEC server is αm0 , the number of local
calculation task of vehicle m OBU is αm1 and the number of 
tasks to offload to another vehicle in the platooning is αm2 ,
where αmk is three consecutive integer decision variables and 
satisfies the following formula:

αm= αmk
2
k=0 , m 1,M

A 0-1 integer decision variable of which member vehicle of 
the platooning is unloaded is cij, which satisfies the following 
calculation formula:

cij
M
j=1 =1, i 1,M

cij=0, i 1,M ,j=i

This article assumes that the bandwidth allocated by the base 
station to each vehicle fleet is w0. Because the amount of time 
of input data transmission is relatively short, during this period, 
the vehicle's position relative to the base station and the distance 
between the member vehicles remains approximately 
unchanged. Therefore, the input data transfer rate is 
approximately a constant value. The calculation formula for the 
channel gain of the upload link from the member vehicle m to 
the base station is[15]:

gm0=128.1+37.5 lg dm0

dm0 is the approximate horizontal distance from member 
vehicle to the base station, and the calculation formula is:

dm0= (xm-x0)2+(ym-y0)2)

where xm,ym is the abscissa and ordinate information when 
the member vehicle requests to calculate the task offloading, 
obtained in real-time by the vehicle-mounted global positioning 
system (GPS). x0,y0 is the inherent abscissa and ordinate 
information of the base station. The calculation formula of 
Signal Noise Ratio (SNR) of the channel is:

SNRm0= pm0gm0
N0w0

Fig. 1. The scenario of computation offloading in Cooperative Vehicle 
Infrastructure System.
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where pm0 is the transmission power allocated by the base 
station to the member vehicles, N0 is the power spectral density 
of Gaussian white noise, and N0+10lgw0 is the background 
noise power. The calculation formula for the data transmission 
rate of the member vehicle m transmitting the calculation task to 
the MEC server is: 

rm0=w0 log2 1+SNRm0 =w0 log2 1+ pm0gm0
N0w0

The transmission time and transmission energy consumption 
for αm0 tasks to be offloaded to the MEC server are:

tm0
t = αm0bm

rm0

em0
t =tm0

t pm0

The calculation time spent by the MEC server to calculate 
αm0 tasks from the vehicle m is:

tm0
c = αm0bmγm

fm0

where fm0 is the CPU calculation frequency assigned to the 
vehicle by the MEC server. The total time and total energy 
consumption for the vehicle m to complete αm0 tasks are:

tm0=tm0
t +tm0

c

em0=em0
t

The total time and total energy consumption spent in local 
calculations are:

tm1=tmm= αm1bmγm
fmm

em1=emm=αm1bmγmζm

where fmm is the CPU calculation frequency allocated by vehicle 
m to αm1 tasks of local calculations.  

In this article, the bandwidth of the V2V communication 
mode is w2 . The approximate channel power gain of V2V 
communication between vehicle m and j is [15]:

gmj=63.3+17.7 lg dmj

The distance dmj between vehicle m and j is: 

dmj= m-j ×d0

where d0 is the distance between two adjacent vehicles. The 
calculation formula for the data transmission rate of the task 
from vehicle m to j is: 

rmj=w2 log2 1+SNRmj =w2 log2 1+
pm2gmj

N2w2

where SNRmj is the SNR of the network communication 
channel between the vehicle m and j, pm2 is the transmission 

power of the vehicle in V2V communication, and N2 is the 
power spectral density of Gaussian white noise. The 
transmission time and transmission energy consumption for αm2
computing tasks from vehicle m to j are: 

tmj
t =

αm2bmcmj

rmj

emj
t =tmj

t pm2

The calculation time and energy consumption of vehicle j to 
calculate these tasks are:

tmj
c =

αm2bmcmjγm
fmj

emj
c =αm2bmcmjγmζj

where fmj is the CPU calculation frequency allocated by 
vehicle j for these tasks. The total time and total energy 
consumption to complete these tasks are:

tmj=tmj
t +tmj

c tm2= tmj
M
j=1,j≠i

emj=emj
t +emj

c em2= emj
M
j=1,j≠i

Based on ensuring the service quality of the vehicle 
platooning, this article aims to minimize the total battery energy 
consumption. The energy consumption of each member vehicle 
includes the CPU calculation energy consumption for local 
calculation, transmission energy consumption of V2N
communication mode for offloading to the MEC server, 
transmission energy consumption of V2V communication mode
for offloading to other member vehicles, and the corresponding 
CPU calculation energy consumption. The calculation formula 
is as follows:

minf0 cij,αik,fij = eik
2
k=0

M
i=1

In this paper, vehicle-infrastructure collaborative computing 
task offloading is modelled as an integer nonlinear programming 
model. The specific calculation formula is as follows:

obj. minf0 cij,αik,fij

s.t.C1 : fij-f≤0j
M
i=1

C2 :max tik ≤ti
C3 :αik ≥ 0, αik=αi,αik Z2

k=0

C4 : cij=1,cii=ci0=0,cij= 0,1M
j=1

C5:
 i= 1,m,…,M
j= 0,m,…,M

k= 0,1,2

where formula C1 means that the sum of the CPU calculation 
frequency assigned to the calculation tasks offloaded to the same 
calculation unit cannot exceed the calculation capacity of the 
calculation unit, formula C2 indicates that tasks that are 
offloaded to different computing units need to be calculated 
within their specified delay constraints, formula C3 indicates 
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that the amount of tasks offloaded to different computing units 
is a non-negative integer, and the sum is equal to the total 
amount of tasks, formula C4 indicates that for each calculation 
task, a member vehicle other than itself must be selected.

The pseudo-code of the extended adaptive large 
neighbourhood search (EALNS) algorithm is shown in Table I,
where xglo means the current optimal solution obtained during 
the iteration, x means the current solution, xcur represents the 
temporary solution obtained by the current solution x after a 
removal heuristic and a repair heuristic. According to the 
acceptance criterion accept xcur,x , it is judged whether to use 
the temporary solution xcur as the current solution x in the next 
iteration. By comparing f xcur with f xglo , judge whether to 
use xcur as the current optimal solution xglo in the next iteration. 
du' and rv' respectively represent the removal heuristic and 
repair heuristic selected in an iteration process. Ω- and Ω+ are 
the set of removal heuristics and repair heuristics proposed in 
this article. ω- and ω+ are the weight sets of each removal 
heuristic and repair heuristic respectively.

IV. SIMULATION RESULTS

In this section, we present simulation results to evaluate the 
performance of the proposed algorithms. To facilitate the 
evaluation, we compare the algorithm proposed in this article
with the generalized Benders decomposition algorithm (GBD), 
an accurate algorithm for solving mixed-integer nonlinear 
programming (MINLP).

Simulation environment configuration is as follows: 
Hardware is Intel Core i5-9300HF CPU. The operating system 
is 64-bit Window 10 Professional Edition. The development 
tools are Java SE Development Kit 8u281, eclipse-committers-
2021-03-R-win32-x86_64, and  EdgeCloudSim.

When the number of team members is 6, each member's 
vehicle calculation task characteristics are shown in Table II.
The computing task offloading schemes obtained by GBD 
algorithm and EALNS algorithm are shown in Fig. 2.

TABLE I. THE PSEUDO-CODE OF THE EALNS ALGORITHM

Extended Adaptive Large Neighbourhood Search
1: Input: An initial solution x0 of computation 

offloading problem.
2: Output: A better solution x* of computation 

offloading problem.
3: Initialization: xglo=x0; x=x0; ω- = 1,...,1 ; 

ω+ = 1,...,1
4: Repeat
5: select destroy and repair methods du' Ω- and 

rv' Ω+ using ω- and ω+

6: xcur=rv' du' x
7: If accept xcur,x  Then
8:    x=xcur
9: End If
10: If f xcur <f xglo  Then
11:    xglo=xcur
12: End If
13: update ω- and ω+;
14: until stopping criterion is met

TABLE II. THE CHARACTERISTICS OF COMPUTING TASKS ON
VEHICLES

1 2 3 4 5 6

tm (ms) 350 250 500 300 400 450

αm 140 100 80 100 50 50

bm (kb) 16 20 25 12 32 24
γm (102

cycles/bit)
2.5 2.25 3.75 3 3.5 2.25

(a) αm0

(b) αm1

(c) αm2

Fig. 2. The computing task offloading schemes obtained by GBD 
algorithm and EALNS algorithm.
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Then, when the number of team members is 6, we set up four 
sets of experiments in which the task volume and complexity of 
the calculation task increase in sequence. The comparison of the 
total energy consumption of the platooning of the two 
algorithms is shown in Fig. 3.

It can be observed from Fig. 3 that as the amount and 
complexity of the calculation tasks of the member vehicles 
increase, the unfeasible single-vehicle calculation task 
offloading schemes generated by the EALNS algorithm in the 
solution process increase. However, compared with the optimal 
total energy consumption of the platooning obtained by the GBD 
algorithm, this meta-heuristic algorithm is still effective. It 
increases the difficulty of getting closer to the optimal solution 
and slows down the search process.

V. CONCLUSION

In this paper, we investigate the task offloading mechanisms 
in vehicular edge computing networks to minimize the total 
energy consumption of the platooning while the task completed 
maximum latency and other constraints are satisfied. We 
analyze the model of the edge computing task offloading scheme 
in the vehicle platooning scenario. When many tasks arrive, the 
vehicle can send part of them to the MEC servers and another 
member vehicle. Moreover, the EALNS algorithm is proposed. 
Extensive simulations are proposed to demonstrate the 
effectiveness of the EALNS algorithm.
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Fig. 3. The comparison of energy consumption values obtained by the 
two algorithms.
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