
Competitive Learning for Unsupervised Anomaly
Detection in Intelligent Transportation Systems

Umuralp Kaytaz∗, Fikret Sivrikaya∗ and Sahin Albayrak∗†
GT-ARC gGmbH, Berlin, Germany∗

DAI-Labor, Technical University of Berlin, Berlin, Germany †

{umuralp.kaytaz@gt-arc.com, fikret.sivrikaya@gt-arc.com, sahin.albayrak@tu-berlin.de}

Abstract—Intelligent Transportation Systems (ITSs) are ex-
pected to have a profound impact on the quality of experience
in future smart cities. Anomaly detection is an imperative
for urban ITS applications to alleviate vulnerabilities that
may cause accidents and fatal causalities. Previously proposed
anomaly detection methods mostly require prior knowledge
and domain specific training and/or optimization procedures.
Therefore, in this work, we propose Competitive Learning based
Anomaly Detection (CLAD) as a generic end-to-end approach
for unsupervised anomaly detection using Auto Regressive
Integrated Moving Average (ARIMA) forecasting model, data
imaging and Centroid Neural Networks (CentNNs). Utilizing
multi-dimensional time-series data obtained from diverse sen-
sory measurements in the DIGINET-PS smart city infrastruc-
ture of TU Berlin, we compare performance of CLAD with
unsupervised competitive learning as well as deep learning
based anomaly detection techniques. Experimental results show
that proposed approach results in higher detection accuracy and
precision compared to other methods when multiple degrees of
anomalies are considered.

Index Terms—Anomaly Detection, Centroid Neural Network,
Intelligent Transportation System, Unsupervised Competitive
Learning, Smart City Infrastructure.

I. INTRODUCTION

Unprecedented scale of urbanization creates new chal-
lenges for the digitalizing communities around the world.
Expansion of transportation network loads continues to ag-
gravate energy consumption, traffic congestion and envi-
ronmental pollution, requiring a transition from previously
adopted methods to a novel connected and automated trans-
portation paradigm [1]. Considering the importance of safety
in vehicular domain, management of future urban transporta-
tion ecosystem demands seamless connectivity, ubiquitous
resources and reliable interdependent operations [2].

Intelligent Transportation System (ITS) is a key enabler
of important vehicular applications such as platooning, park-
ing lot management, dynamic traffic light synchronisation
and real-time safety notifications [3]. Performance of these
applications depends on the online learning and processing
capabilities of deployed ITS infrastructure elements such as
sensors, cameras, LiDARs, On-Board Units (OBUs), Road-
Side Units (RSUs) as well as standalone (SA) & non-
standalone (NSA) base stations [4]. Continuous interac-
tion between these pervasive components leads to multi-
dimensional reciprocal data streams that can contain point-
wise or contextual anomalies [5]. Resultingly, processing

of anomalous data may cause middleware malfunctions and
ADAS faults that can induce head-on collisions or unex-
pected events. Therefore, ensuring functional stability with
anomaly detection is of vital importance in transportation
management for alleviating vulnerabilities that can result in
accidents and fatal causalities [6]. Although reliability in
transportation ecosystem has attracted considerable attention
in the past, generic unsupervised anomaly detection in ITS
environment is a major remaining challenge.

An anomaly detection approach based on feature extrac-
tion and classification using closed-circuit television camera
images is presented in [7]. Another work for clustering
video streams of traffic surveillance systems is proposed in
[8]. These works focus solely on video streams lacking the
necessary complexity for the digitalized ITS environment.
[9] proposes a Deep Neural Network (DNN) based anomaly
detection framework that utilizes Long-Short Term Memory
(LSTM) technique. Similarly, a supervised learning method
using Streaming Half-Space-Trees (HS-Trees) is presented
in [10] for fast anomaly detection in data streams. Moreover,
both of the Deep Learning (DL) approaches presented in [11]
and [12] rely on Convolutional Neural Networks (CNNs),
Auto-Regressive Integrated Moving Average (ARIMA) model
forecasting and euclidean distance based anomaly detec-
tion. Another DL method, Generative Adversarial Network
(GAN), based anomaly detection and localization in multi-
variate time series data is presented in [13]. All of the
proposed DL methods depend on supervised/semi-supervised
training procedures that require domain specific labeling of
individual data points. Furthermore, their generalizability is
also restricted by the use of simple distance functions at
the anomaly detection stage. On the other hand, unsuper-
vised subsequence anomaly detection with low-dimensional
embedding and graph transformation is examined in [14].
However, proposed algorithm considers uni-dimensional time
series and requires a predetermined subsequence length input
for the anomaly detection procedure, thus inhibits applicabil-
ity and practicality in vehicular domain.

In this paper, we propose Competitive Learning based
Anomaly Detection (CLAD) as a generic end-to-end
approach for unsupervised anomaly detection in multi-
dimensional data streams of ITS applications. First, we use
real-world sensory measurements obtained in the DIGINET-
PS smart city infrastructure of TU Berlin for training and test-

ing datasets. Second, we train and utilize statistical ARIMA
model for forecasting expected values and comparing predic-
tions with the actual observations. Third, we perform spatio-
temporal imaging of data points and apply unsupervised
competitive learning based clustering using Centroid Neural
Networks (CentNNs). Finally, modeling graph representation
of centroid clusters as abstract states, we detect and score
anomalies in multi-dimensional sensor data observations.

The remainder of the paper is organized as follows. Sec-
tion II describes the system model. Section III presents pre-
liminary information on time-series forecasting, data imag-
ing, unsupervised competitive learning, CentNNs and graph
based anomaly detection. Details of CLAD algorithm is
provided in Section IV. Section V details simulation setup
and analyzes experimental outcomes. Finally, we present our
concluding remarks in Section VI.

II. SYSTEM MODEL

Adopted functional organization of the DIGINET-PS plat-
form is provided in Fig. 1. Considering the requirements
of future ITS ecosystems, DIGINET-PS encompasses sensor
technology implementations, communication infrastructure
deployment and intelligent coordination among road-side
elements such as traffic lights, street lighting and parking
slots [15]. Urban test field of the smart city platform stretches
over 3.5 kms at the center of Berlin, Germany, offering a
digitalized infrastructure for connected and automated vehic-
ular applications. Road-side infrastructure of the test field
consists of diverse sensors and actuators as well as RSUs,
cameras and traffic lights that continuously interact with
active traffic participants such as vehicles and pedestrians. On
the other hand, wired and wireless networking infrastructure
is facilitated for providing vehicle-to-infrastructure (V2I) and
vehicle-to-vehicle (V2V) communication links.

Networking Infrastructure
(Wired & Wireless Communication)

Active Traffic Participants
(Vehicles, Pedestrian, …)

Road-side Infrastructure
(RSU, Camera, Traffic Lights, …)

Data Traffic

Mobile Edge Computing

Data Storage & Monitoring
Knowledge Base/Dynamic Maps

Vehicular Application Development

Local Data Management

Local Storage Control Traffic

Data Synchronization

Figure 1: Organization of DIGINET-PS smart city platform

Using the communication infrastructure, data traffic con-
taining visual recordings and sensory measurements are
continuously transmitted to the Mobile Edge Computing
(MEC) units for initial processing purposes. Subsequently,
local data storage is performed for ad hoc computations and
temporary caching. At the end of the initial processing phase,
locally accumulated data is synchronized with the rest of
the measurements and infrastructure resources in the global
storage and monitoring system. Maintenance of the acquired
data and monitoring of devices are performed for knowledge
base/dynamic map utilization and further development of
intelligent applications in vehicular domain [16].

III. PRELIMINARIES

In this section, we introduce preliminary information
on ARIMA statistical model, imaging of multi-dimensional
time series, unsupervised competitive learning, CentNN and
anomaly scoring with graph representation. Initially, time-
series forecasting using past values with ARIMA model is
explained. Later on, data imaging with distance matrices
is presented for data transformation and representation in
learning algorithms. Followingly, competitive learning tech-
nique CentNN is discussed for unsupervised centroid based
clustering. Finally, we detail graph representation for data
clusters and anomaly scoring.

A. ARIMA Forecasting Model

As a well-known time-series regression method, ARIMA is
a statistical model that uses linear combination of previous
errors and observations. Given a time-series data of length
l, X = {x1, ..., xl} , an Auto-Regressive model AR(p) is a
process that forecasts a series based on only past p values,
lags, such as

xt = ζ +

p∑
i=1

αixt−i + θt (1)

where θt denotes stochastic error at time t, ζ is the
intercept and αi is a linear coefficient of past values. Simi-
larly, a Moving Average model MA(q) can be established by
replacing past values with error terms resulting in a process
consisting of past q errors. Using βj as the linear operator,
MA(q) model can be written as

xt = ζ +

q∑
j=1

βjεt−j + θt (2)

In order to utilize information from both errors as well
as observations, ARIMA model blends ideas of AR and MA
models as a linear combination and includes a parameter d
in the prediction as the number of first order differences for
transforming non-stationary time-series [17]. Consequently,
ARIMA(p,q,d) forecasting model can be written as follows

zk = ∆dxk (3)

zt = ω +

p∑
i=1

αizt−i +

q∑
j=1

βjεt−j + θt (4)

B. Data Imaging for Multi-Dimensional Time Series

Data imaging using distance matrices is an effective way
of transforming multi-variate time series and revealing inter-
correlations between different data sources [13]. Given d
dimensional data points xi ∈ Rd in a time series X =
{xi, ..., xl}, such that X ∈ Rdxl, a distance matrix ei ∈ Rdxd

from vector xi = {xi1 , ..., xid} for a time period λ can be
calculated using Minkowski distance function as follows

eij,k =
1

λ

λ−1∑
δ=0

(∣∣xji−δ
− xki−δ

∣∣M) 1
M

(5)

where M = 2 can be used for euclidean distance based
calculations. This transformation to data images {e1, .., el}
enables encoding spatio-temporal information of data sources
as a pairwise phase difference while providing robustness
against impulse noise with time period averaging [13].

C. Unsupervised Competitive Learning & CentNNs

Stemming from the ideas of Hebbian Theory and synaptic
plasticity [18], in unsupervised competitive learning, a set of
neurons M compete with each other in a ”winner-takes-all”
manner by measuring similarity to a particular input vector
xi = {xi1 , ..., xid}. At a given epoch, namely a complete
presentation of all the input data vectors, a neuron wins
an input data vector if it has the most similarity compared
to other neurons. This similarity condition for winning a
data vector xi can be realized using L2-norm based nearest
neighbour selection with wi = {wi1 , ..., wid} as the winning
neuron weights

wi = min
k
||xi − wk||2 (6)

As an unsupervised competitive learning method, CentNN
uses neurons as locally optimal synaptic vectors that it-
eratively converge to centroids of data clusters. CentNN
algorithm updates neuron weights based on minimum energy
and status change conditions comparing recent and previous
epochs [19]. Considering a cluster c consisting of N c mem-
bers, based on the minimum energy condition, weights of the
centroid wc in a data cluster should be chosen in a way to
contain minimum energy such as

wc = min
j

Nc∑
k=1

||xc
k − wj ||2 =

1

N c

Nc∑
k=1

xc
k (7)

where xc
k represents k-th data vector in cluster c. In

CentNNs, a neuron’s status becomes winner if it wins input
data vector in current epoch but it did not win the same vector
in previous epoch iteration. On the other hand, a neuron
becomes loser if it won the given data vector in previous
epoch but does not win the vector in the most recent epoch
iteration [19]. Based on this, neuron weight update equations

Table I: Notation

Notation Description
X = {x1, ..., xl} Time-series data of length l
xi = {xi1 , ..., xid} d-dimensional vector x at index i

AR(p) Auto-Regressive model with past p values
MA(q) Moving Average model with past q errors

ARIMA(p,q,d) Auto-Regressive Integrated Moving Average model
ζ Intercept

α, β Linear coefficients
θi Stochastic error at index i

zk = ∆dxk d-times first-order difference of xk

ei Data image at index i
wl = {wl1 , ..., wld} Weight vector of l-th neuron

wc Weights of centroid in cluster c
w(n) Weight vector at the n-th iteration
Nc Number of members in cluster c
xc
k k-th data vector in cluster c

GT (N , E) Cyclic graph of data clusters for time period T
Xo = {xo

1, ..., x
o
T } Observed time-series in time period T

Xp = {xp
1, ..., x

p
T } Predicted time-series in time period T

poi ∈ eoi Observed data image point at index i
ppi ∈ epi Predicted data image point at index i

Ca Cluster a
Ak Anomaly of k-th degree

of CentNN algorithm for winner i and loser j neurons can
be written as follows

wi(n+ 1) =
1

N i − 1
[wi(n)N

i − xn]

= wi(n)−
1

N i − 1
[xn − wi(n)]

(8)

wj(n+ 1) =
1

N j + 1
[wj(n)N

j + xn]

= wj(n) +
1

N j + 1
[xn − wj(n)]

(9)

where n stands for the iteration index, w(n) represents
weight vector at the n-th iteration and N c is the number of
members in cluster c.

D. Graph based Anomaly Scoring

Graph representation of low-dimensional time series trans-
formations has been shown to be an effective method for
detecting anomalies of subsequence elements in an unsu-
pervised manner [14]. Inspired by this approach, we define
G(N , E) as a cyclic graph, where node set N is the set of
clusters learned from data images {eo1, e

p
1, ..., e

o
T , e

p
T } of ob-

served Xo = {xo
1, ..., x

o
T } and predicted Xp = {xp

1, ..., x
p
T }

multi-dimensional time series over a time period T and edge
set E represents bidirectional edges between neighbouring
centroids. Considering a graph G(N , E) and a centroid Ca ∈
N , we define normality (A0) as both observation poi ∈ eoi
and prediction ppi ∈ epi data image points from a given time
index i belonging to the same cluster, namely {poi , p

p
i } ∈ Ca.

Similarly, degree of anomaly Ak for data image points
{poj , p

p
j} from a time instance j can be calculated based

on the number of one-hop cluster neighbours k between the
observed {poj} and predicted {ppj} points as shown in Fig. 2.

{𝒑𝒋
𝒑
}

𝑪𝒃

𝑨𝟏

𝑪𝒂𝑪𝒂

{𝒑𝒊
𝒐, 𝒑𝒊

𝒑
}

{𝒑𝒌
𝒐}

𝑪𝒄

{𝒑𝒋
𝒐, 𝒑𝒌

𝒑
}

𝑨𝟐

𝑨𝟎

Figure 2: Graph based anomaly scoring

IV. APPROACH

Next, we describe our CLAD architecture and algorithms
for prediction and unsupervised anomaly detection in ITS
data streams. Initially, we elaborate on CLAD algorithm by
detailing prediction using observed data, imaging of both
observed and predicted time-series, clustering with CentNN
approach and graph based anomaly detection. Later on, we
further explain data image clustering using unsupervised
competitive learning with multiple neurons that converge to
cluster centroids.

Algorithm 1: Competitive Learning based Anomaly
Detection (CLAD)

Input: xo
i ∈ Xo : xo

i = {xo
i1
, ..., xo

id
} ←− observed

sensor data stream from ITS infrastructure
Output: A ←− detected anomalies

1 Compute Xp ←− ARIMA(p,q,d)(X
o)

2 Initialize global data image eG

3 Initialize set of anomaly scores S
4 for each data point {xo

i ∈ Xo} and {xp
i ∈ Xp} do

5 Compute eoi ←− data imaging(xo
i)

6 Compute epi ←− data imaging(xp
i)

7 Update eG ←− get points(eoi , e
p
i)

8 Compute centroids {C} ←− CNNC(eG)
9 Get graph G ←− construct graph({C})

10 for each data image point {poj ∈ eoj} and
{ppj ∈ epj}|{eoj , e

p
j} ∈ eG do

11 Compute {Aj} ←− score anomaly(eG,G)
12 Update S ←− update anomaly list({Aj})

A. Competitive Learning based Anomaly Detection (CLAD)

Algorithm 1 is executed for detecting and scoring anoma-
lies in multi-dimensional observed data streams obtained
from a given ITS infrastructure. Detection procedure is
triggered upon storage of multiple sensor measurements
in a discretized and sequential manner. Initially, ARIMA
statistical forecasting model is used for predicting upcoming
values of observed sensor measurements using predetermined
parameters {p, q, d} (Line 1). Later on, a global data image
eG is initialized for accumulating data image transformations
in a planar domain (Line 2). Similarly, a set S is also
initialized for storing and returning the detected anomalies

(Line 3). Data imaging procedure is iteratively carried out for
each of the data points in observed and predicted time series
(Lines 4-7). During this procedure, data is transformed and
represented in terms of distance matrices containing multiple
data image points that encode spatio-temporal correlations of
diverse measurements (Lines 5-6). Followingly, global data
image eG is updated using newly computed observed and
predicted data image points {eo, ep} (Line 7). Using unsuper-
vised competitive learning approach CentNN, unsupervised
clustering is performed on the global data image eG (Line 8).
Resultingly, a set of centroid locations {C} are returned as
the neurons in CentNN converge to locally optimal centroids
of data clusters with the iterative weight update procedure.
Considering data clusters as abstract states and neighborhood
relationship of data clusters as edges, namely N and E , a
cyclic graph G(N , E) is constructed using centroid coordi-
nates on the global data image eG (Line 9). Consequently,
each observed data image point {poj ∈ e0j} in the global
data image eG is compared with its predicted counterpart
{ppj ∈ epj} in terms of cluster membership and anomalous
localization of data image point couples are scored (Lines
10-11). At the end of graph based anomaly detection process
set S is updated with latest anomaly information (Line 12).

Algorithm 2: Centroid Neural Network based Clus-
tering (CNNC)

Input: {poi , p
p
i } ∈ eG : ∀i ∈ N

Output: {C} ←− set of centroids
Data: M ←− set of neurons, k ←− number of clusters

1 Compute c←− compute centroid(eG)
2 Initialize k = 2
3 Initialize
{wn1

, wn2
} ←− set weights(c) : n1, n2 ∈M

4 for k ≤M do
5 for each point p ∈ eG do
6 Compute winner neuron W of current epoch
7 Compute loser neuron L of current epoch
8 Update

{W,L} ←− update weights(wW , wL, p)

9 if k ̸= |M | then
10 Compute

wnk+1
←− split based on error(eG)

11 Update k+ = 1

B. Centroid Neural Network based Clustering (CNNC)

CLAD procedure uses Centroid Neural Network based
Clustering (CNNC) algorithm for updating neuron weights
and computing locally optimal centroids with unsupervised
competitive learning approach. After construction of the
global data image eG, Algorithm 2 is run for training a
predetermined number of neurons that converge to centroids
of data clusters. First, an overall centroid c of all available
data image points is computed (Line 1). Later on, a neuron

counter variable k and weights of two neurons {wn1
, wn2

}
are randomly initialized using c and a random error ϵ such as
wn1,2 = c± ϵ (Lines 2-3). This initialization is performed to
avoid training of CentNN from getting stuck at an undesired
local optimum [19]. Followingly, a training procedure is
repeated until all of the clusters are stable and neuron
weights do not require to be updated (Lines 4-11). During
the training phase of CentNN, weight update is performed
by iterating over each data point p ∈ eG and determining
winner W and loser L neurons at the most recent epoch
(Lines 5-8). However, a data cluster j with the most error
is split unless desired number of neurons are included in the
training procedure (Lines 9-10). A weight vector is initialized
wnk+1

= wnj
+ ϵ for a newly joining neuron using a random

error ϵ and weight of neuron j. At the end of each epoch,
neuron counter variable k is updated (Line 11).

V. SIMULATIONS

A. Simulation Setup

Simulation results of anomaly detection methods have been
obtained using open-source neural-network library Keras,
python-based statistical estimation module statsmodels and
network analysis package NetworkX. Experimental data have
been collected by utilizing DIGINET-PS platform resources
for vehicle velocity (Velo), vehicles-per-minute (Vpm) count,
Cooperative Awareness Message (CAM) count, Decentralized
Environmental Notification Message (DENM) count and lane
change activity percentage (Lane) measurements. A total of
11100 data points were accumulated with 5 minute intervals
over a period of 10 days. Furthermore, [2/3, 1/3] train-
test split ratio and linear scaling based normalization were
adopted for obtaining the experimental datasets. Multivariate
normal distribution samples were added as synthetic anoma-
lies to the %1 of measurement data for evaluation purposes.

Table II: Hyperparameters

Hyperparameter Value

CLAD
Number of epochs 1000

ARIMA (p,q,d) (5,1,0)
Number of neurons 10

Epsilon ϵ 0.05
GAN

Number of epochs 10000
Generator feed-forward network layers 15-10

Discriminator feed-forward network layers 25-10-1
Optimizer Adam
Batch size 128

Latent dimensions 10
Loss function Binary cross-entropy

SOM
Number of epochs 10000

Map shape 2x5
Learning rate 0.01

K-Means
Number of epochs 1000
Number of clusters 10

In order to compare performance of our proposed approach

with other competitive learning based unsupervised anomaly
detection methods, we have implemented Self-Organizing
Map (SOM) and K-Means algorithms with default hyper-
parameters presented in Table II. Distance measurement to
cluster centroids was used alongside with thresholding for
classification of anomalies in unsupervised anomaly detection
techniques and the average of multiple threshold values was
calculated for statistical performance analysis. Additionally,
as a semi-supervised DL based method, GAN and euclidean
Distance Function (DF) based anomaly detection was se-
lected similar to the approach proposed in [13]. For a fair
comparison, ARIMA model was utilized in the prediction
phase of unsupervised anomaly detection techniques.

Table III: Statistical Metrics for Anomaly Detection

Metric Formula

Accuracy (True Positives + True Negatives) / Sample Count
Precision True Positives / (True Positives + False Positives)

Recall True Positives / (True Positives + False Negatives)

A P R
CLAD(A1)

A P R
CLAD(A1+A2)

A P R
SOM

A P R
K-Means

A P R
GAN+DF

0

10

20

30

40

50

60

70

80

90

100

Anomaly Detection Technique

A
cc

ur
ac

y-
Pr

ec
is

io
n-

R
ec

al
lM

ea
su

re
m

en
ts

(%
)

Figure 3: Accuracy(A) - Precision(P) - Recall(R) statistics
of anomaly detection techniques

B. Simulation Results
We first present evaluation of anomaly detection methods

using statistical performance metrics shown in Table III. Fig.
3 shows the comparison of anomaly detection performance
in terms of accuracy, precision and recall measurements. It
is evident that the CLAD algorithm provides higher accu-
racy and precision of anomaly detection compared to other
methods when both first and second degree anomalies are
considered, CLAD(A1+A2). This shows that proposed model
can differentiate true anomalies as well as falsely labeled
anomalies (false positives) better than other techniques. On
the other hand, low detection accuracy is observed with K-
means model and CLAD procedure when only first degree
anomalies are involved, CLAD(A1). However, we also see
that K-means results in the highest recall values among all
the selected anomaly detection algorithms.

5 10 15
0

10

20

30

40

50

60

70

80

90

100

Number of Neurons

A
no

m
al

y
D

et
ec

tio
n

Pe
rf

or
m

an
ce

(%
)

K-means - Accuracy
K-means - Precision
SOM - Accuracy
SOM - Precision
CLAD(A1) - Accuracy
CLAD(A1) - Precision
CLAD(A1+A2) - Accuracy
CLAD(A1+A2) - Precision

Figure 4: Performance of unsupervised competitive learning
based anomaly detection with changing number of neurons

Fig. 4 depicts the performance comparison of unsupervised
competitive learning based anomaly detection methods for
changing number of neurons in the computation procedure.
We observe higher accuracy and lower precision values when
the number of neurons increases with the CLAD(A1+A2)
method due to the expansion of vertex degrees and cluster
count in the graph representation. Contrarily, the proposed
algorithm results in lower performance measurements when
only first degree anomalies are employed, CLAD(A1). As
more neurons compete for data point collection in the un-
supervised clustering procedure, the accuracy of traditional
techniques, namely K-means and SOM, decreases drastically
while their precision performance of detecting true anomalies
(true positives) increases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present CLAD as a generic end-to-end
approach for unsupervised anomaly detection and scoring in
multi-dimensional data streams of ITS platforms. Initially,
CLAD algorithm has been proposed utilizing ARIMA fore-
casting, data imaging, CentNN based competitive clustering
and graph representation techniques. Later on, we com-
pared performance of CLAD with unsupervised competitive
learning and semi-supervised DL based anomaly detection
methods while incorporating various statistical metrics. Fur-
thermore, we have used real-world sensory measurements
obtained in the DIGINET-PS smart city infrastructure of TU
Berlin for the preparation of training and testing datasets in
our experiments. We see that CLAD demonstrates higher
accuracy and precision performance in anomaly detection
compared to other approaches when multiple degrees of
anomalies are considered. Moreover, we observe that the
accuracy of anomaly detection increases as more neurons are
involved in the computation procedure. In our future work we
aim to focus on the likelihood of time-series predictions and
improving performance of anomaly detection using learning
and representation techniques.

VII. ACKNOWLEDGMENT

This work was supported in part by the European Commis-
sion under the grant agreement number 825496 (5G-MOBIX)
and by the German Federal Ministry of Transport and Digital
Infrastructure under the grant number 01MM20004 (BeIn-
telli).

REFERENCES

[1] X. Ma, H. Zhong, Y. Li, J. Ma, Z. Cui, and Y. Wang, “Forecasting
transportation network speed using deep capsule networks with nested
lstm models,” IEEE Transactions on Intelligent Transportation Sys-
tems, pp. 1–12, 2020.

[2] Y. Bi, C. Lin, H. Zhou, P. Yang, X. Shen, and H. Zhao, “Time-
constrained big data transfer for sdn-enabled smart city,” IEEE Com-
munications Magazine, vol. 55, no. 12, pp. 44–50, 2017.

[3] S. Zeadally, M. A. Javed, and E. B. Hamida, “Vehicular communica-
tions for its: standardization and challenges,” IEEE Communications
Standards Magazine, vol. 4, no. 1, pp. 11–17, 2020.

[4] A. H. Sodhro, S. Pirbhulal, G. H. Sodhro, M. Muzammal, L. Zongwei,
A. Gurtov, A. R. L. de Macêdo, L. Wang, N. M. Garcia, and
V. H. C. de Albuquerque, “Towards 5g-enabled self adaptive green
and reliable communication in intelligent transportation system,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–9, 2020.

[5] M. H. Hassan, A. Tizghadam, and A. Leon-Garcia, “Spatio-temporal
anomaly detection in intelligent transportation systems,” Procedia
Computer Science, vol. 151, pp. 852–857, 2019.

[6] K. K. Santhosh, D. P. Dogra, and P. P. Roy, “Anomaly detection in
road traffic using visual surveillance: A survey,” ACM Comput. Surv.,
vol. 53, no. 6, Dec. 2020.

[7] S. S. Sarikan and A. M. Ozbayoglu, “Anomaly detection in vehicle
traffic with image processing and machine learning,” Procedia Com-
puter Science, vol. 140, pp. 64–69, 2018, cyber Physical Systems and
Deep Learning, Chicago, Illinois November 5-7, 2018.

[8] M. U. Farooq, N. A. Khan, and M. S. Ali, “Unsupervised video
surveillance for anomaly detection of street traffic,” International
Journal of Advanced Computer Science and Applications (IJACSA),
vol. 12, no. 8, pp. 270–275, 2017.

[9] T. S. Buda, B. Caglayan, and H. Assem, “Deepad: A generic frame-
work based on deep learning for time series anomaly detection,” in
Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2018, pp. 577–588.

[10] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for
streaming data,” in Twenty-Second International Joint Conference on
Artificial Intelligence, 2011.

[11] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “Deepant: A deep
learning approach for unsupervised anomaly detection in time series,”
IEEE Access, vol. 7, pp. 1991–2005, 2018.

[12] M. Munir, S. A. Siddiqui, M. A. Chattha, A. Dengel, and S. Ahmed,
“Fusead: unsupervised anomaly detection in streaming sensors data by
fusing statistical and deep learning models,” Sensors, vol. 19, no. 11,
p. 2451, 2019.

[13] Y. Choi, H. Lim, H. Choi, and I.-J. Kim, “Gan-based anomaly detection
and localization of multivariate time series data for power plant,”
in 2020 IEEE International Conference on Big Data and Smart
Computing (BigComp), 2020, pp. 71–74.

[14] P. Boniol and T. Palpanas, “Series2graph: Graph-based subsequence
anomaly detection for time series,” Proc. VLDB Endow., vol. 13,
no. 12, p. 1821–1834, Jul. 2020.

[15] “Diginet-ps project,” https://diginet-ps.de/en/home/, 2017.
[16] F. Sivrikaya, M. A. Khan, C. Bila, and S. Albayrak, “Reciprocal impact

of autonomous vehicles and network resource management,” in 2017
IEEE Vehicular Networking Conference (VNC), 2017, pp. 231–234.

[17] G. E. Box and D. A. Pierce, “Distribution of residual autocorrela-
tions in autoregressive-integrated moving average time series models,”
Journal of the American statistical Association, vol. 65, no. 332, pp.
1509–1526, 1970.

[18] J. L. McClelland, D. E. Rumelhart, P. R. Group et al., Parallel
distributed processing. MIT press Cambridge, MA, 1986, vol. 2.

[19] D.-C. Park, “Centroid neural network for unsupervised competitive
learning,” IEEE Transactions on Neural Networks, vol. 11, no. 2, pp.
520–528, 2000.

