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Abstract—Radio Access Network (RAN) slicing is getting
increasing attention as a resource allocation technique for sat-
isfying diverse Quality-of-Service (QoS) requirements in 5G ve-
hicular networks. Hierarchical Reinforcement Learning (HRL),
such as hierarchical-DQN (h-DQN), is a promising slice man-
agement approach that decomposes performance constraints
into a subroutine hierarchy and uses Deep Reinforcement
Learning (DRL) at different temporal scales for online-learning
an optimal policy of bandwidth allocation. In this paper, we
tackle RAN slicing problem in 5G vehicle-to-everything (V2X)
communications and present h-DQN based Soft Slicing (HSS)
method for model-free opportunistic slice management. HSS
consists of a multi-controller learning framework where a high-
level meta-controller takes state input for determining a subgoal
and a low-level controller decides on the action based on the
given subgoal and the state. We compare performance of HSS
with model-free and model-based Reinforcement Learning (RL)
methods in terms of Age of Information (AoI), service delay and
network throughput. Our results show that proposed scheme
improves sample-efficiency and outperforms traditional and RL-
based V2X RAN slice management methods in terms of network
utility maximization.

Index Terms—5G, Quality-of-Service (QoS), RAN Slicing, Re-
inforcement Learning, Intelligent Transportation System (ITS).

I. INTRODUCTION

Intelligent Transportation Systems (ITSs) are envisioned to
be an integral part of 5G communications enabling advanced
applications while providing social as well as economic
benefits [1]. Diverse Quality-of-Service (QoS) requirements
of vehicular connectivity motivated various standardization
efforts such as Cellular Vehicular-to-Everything (C-V2X) by
the 3rd Generation Partnership Project (3GPP) and Dedi-
cated Short Range Communications (DSRC) by the Institute
of Electrical and Electronics Engineering (IEEE) and Eu-
ropean Telecommunications Standards Institute (ETSI) [2].
Although V2X communications and related 5G use cases
have been considered since Long Term Evaluation (LTE)
release 14 by the 3GPP, enabling mobile broadband with
vertical applications in future vehicular domain still remains
a challenge [3].

Due to dynamic pace of the vehicular communication
networks, 5G ITS applications require in-network content
storage and ultra-reliable V2X communications [4]. There-
fore, storing replica of content with the help of Roadside
Units (RSUs) and facilitating V2X communications is a
promising solution for improving efficiency and connectivity

in cache-enabled vehicular networks [5]. Furthermore, diver-
sity of V2X application categories causes multi-dimensional
QoS demands [6]. While infotainment applications, such
as peer-to-peer file transfer or gaming, rely on enhanced
Mobile Broad Band (eMBB) with high bandwidth allocation,
an autonomous driving service such as platooning focuses
on cooperative adaptive cruise control and demands Ultra-
Reliable and Low-Latency Communications (URLLC) [7].
Radio Access Network (RAN) slicing is a virtualization
technique for creating multiple logical networks on a shared
physical infrastructure and a key enabling technology for
simultaneously accommodating these diverse set of appli-
cations in 5G networks [1]. Although, there have been
previous efforts on vehicular network slicing using network
state information, online-learning for multi-dimensional QoS
provisioning remains an open issue.

Cellular network slicing approaches are not practical so-
lutions for the management of heterogeneous vehicular re-
sources due to the multiplicity of use cases and connectivity
requirements [8]. A RAN slicing architecture for vehicular
resource management based on High Altitude Platforms
(HAPs) is presented in [9]. Another work based on RSU
virtualization is proposed in [6] for hierarchical opportunistic
slicing, namely soft slicing, in evenly distributed traffic
density. [10] addresses latency-aware dynamic resource al-
location by formulating RAN slicing as a maximum utility
optimisation problem and uses hierarchical decomposition
technique for reducing the complexity of the optimisation
problem. These approaches require complete network state
information for computation of a slice management policy
and do not allow an online-learning approach. The method
proposed in [11] uses application aware content placement
framework for determining vehicular cache content. Con-
sidering the dynamics of the ever-changing vehicular en-
vironment proposed heuristic design is not practical for
satisfying diverse QoS demands in 5G networks. [12] exam-
ines RAN slicing by constructing optimization subroutines
with constrained Reinforcement Learning (RL) algorithms.
Another work in [13] proposes a proactive algorithm for
Radio Resource Management (RRM) using Long Short-
Term Memory (LSTM) and addresses partial network state
observability with Deep Reinforcement Learning (DRL). [7]
uses RL in a two-slice system consisting of eMBB and V2X
slices for RAN slicing in heterogeneous networks. These



works use traditional RL-based methods that require training
of unique policies for different tasks, therefore, they are
not feasible solutions for complex real-world problems with
multiple subgoals. On the other hand, Hierarchical Rein-
forcement Learning (HRL) accomplishes behaviour planing
in a modular fashion by pursuing multiple subgoal policies
that are reused for subsequent tasks. This allows sample-
efficient computation and online-learning a policy using
spatio-temporal abstractions [14].

In this paper, we propose HRL based dynamic RAN slicing
for satisfying diverse demands in 5G vehicular communi-
cation networks. First, we develop a HRL formulation as a
modular architecture using subgoal-based task decomposition
for on-road content services. Secondly, we propose h-DQN
based Soft Slicing (HSS) method as a novel multi-controller
learning framework for dynamic RAN slicing in 5G V2X
communications. Third, we integrate hierarchically priori-
tized experience replay [14] and a hybrid reward function
strategy [6] to the proposed HSS algorithm for evaluating
diverse QoS requirements. Fourth, we investigate bandwidth
utilization and slice management performance of HSS using
Age of Information (AoI), network utility and service delay
metrics.

The remainder of the paper is organized as follows. Sec-
tion II describes the system model. Section III presents the
HRL formulation and multi-controller learning framework.
Details of the HSS-based dynamic RAN slicing algorithm is
provided in Section IV. Section V details simulation setup
and analyzes experimental outcomes. Finally, we present our
concluding remarks in Section VI.

II. SYSTEM MODEL

Application-specific RAN slice management and orches-
tration framework in Fig. 1 is considered for the 5G V2X
networking scenario. Automation in the slicing architecture
is managed by the Service Orchestrator (SO), which receives
requirements of vertical applications through a Service Level
Agreement (SLA). SO creates slice and/or service instances
and enforces slicing decisions through Network Functions
Virtualization (NFV) Management platform by broking Vir-
tual Machines (VMs) at the network edge. NFV Management
& orchestration platform coordinates network resources and
lifecycle management of Virtual Network Functions (VNF)
while also taking responsibility for operating the network
content of on-road applications. RSUs store the published
content and distribute content to vehicles using infrastructure-
to-vehicle (I2V) links. On the receiving end, vehicles store
content for requested services and share their cache content
using V2V communications for reducing workload of RSUs.

We employ four distinct RAN slices for possible V2X ap-
plication categories, namely autonomous driving, intelligent
assistance, infotainment, remote diagnostics and management
[3]. For autonomous driving slice we consider platooning
and remote driving applications that require URLLC service
configurations. Similarly, intelligent assistance is a time-
sensitive service aiming to increase driving comfort providing

information related to parking lots, safety and traffic effi-
ciency [3]. Contrarily, infotainment and remote diagnostics
applications demand high-bandwidth consumption and local
content availability rather than low-latency communications.

Each RAN slice contains multiple functions realized over
RSU virtualization and local content sharing. RSU content
update function is used for renewal of cached content at
the infrastructure. Infrastructure-to-Vehicle (I2V) broadcast
function enables proactive content delivery to multiple ve-
hicles. On the other hand, I2V unicast function is for de-
livering requested content to a single node. Local breakout
of requested content is realized through Vehicle-to-Vehicle
(V2V) breakout function. Each function of RSU virtualisation
operates through a Virtual Machine (VM) for the dedicated
slice.
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Figure 1: RAN slice management & orchestration framework
for 5G V2X functionalities

III. PRELIMINARIES

In this section, we provide preliminary information related
to the HRL based dynamic RAN slicing approach. Initially,
we present Markov Decision Process (MDP) formulation
with respect to the dynamic RAN slicing problem. Af-
terwards, we elaborate on RL definitions, such as value
functions, for representing the expected utility. We discuss
Deep Q-Learning (DQL) for approximation of an optimal
policy using Deep Neural Networks (DNNs). Furthermore,
we explain DQL using Double Deep Q-Network (DDQN)
approach for parameter optimization and loss function min-
imization. Finally, we introduce HRL as a multi-controller
DQL framework based on temporal abstraction.



A. Markov Decision Process & Value Functions

MDP is a formulation technique for discrete-time stochas-
tic control problems. MDP formulation uses one-step dynam-
ics of the environmental information alongside with agent’s
state and action definitions [15]. Our state-space S represents
possible slice bandwidth allocation ratios among edge VMs.
Action space A is the set of actions where each action is
a possible rescheduling of the available bandwidth. Environ-
mental dynamics of the MDP consist of a discount factor γ
for contribution of possible future rewards, a state-transition
probability distribution P : SxAxS −→ [0, 1] for representing
probability of upcoming bandwidth allocation ratios and a
reward function R : SxAxS −→ R for mapping immediate
reward based on the given state, upcoming state and given
action. We can define MDP as a tuple 〈S,A,R,P, γ〉 where
P and R compose the agent’s environmental model.

RL is a commonly used way of solving MDP formulations
that require finding a policy π for maximizing expected future
rewards [15]. In RL, value-function V π(s) estimates utility
and/or expected discounted future rewards of state s while
the agent behaves under a policy π. Similarly, action-value
function (or Q-value) Qπ(s, a) represents the expected return
of taking an action a at state s while following a policy π for
the agent objective. Value functions, V π(s) and Qπ(s, a), at
time t can be calculated with the following equations where
γk is used for decreasing importance of future rewards and
rt+1 = R(st, at, st+1) is the immediate reward

V π(s) = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣∣st = s

]
(1)

Qπ(s, a) = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣∣ st = s, at = a

]
(2)

Optimal state-value V ∗(s) and action-value Q∗(s, a) func-
tions represent the utility under a policy π∗ that maximizes
the expected rewards

V ∗(s) = max
π

V π(s) (3)

Q∗(s, a) = max
π

Qπ(s, a) (4)

B. Deep Q-Learning & Double Deep Q-Network

In the absence of environmental model definitions, solving
an MDP formulation requires approximation of a determin-
istic stationary policy. As an online-learning approach, Q-
learning recursively learns optimal policy π∗ by iteratively
approximating optimal action-value function Q∗(s, a) that
stores highest utility values. Considering high-dimensional
problems where action-value functions are approximated
using DNNs, Q-value can have a parametrized representation
Q(s, a|θ). DQL process using DNN approximation can be
expressed as follows

Table I: Hierarchical Reinforcement Learning Notation

Notation Description
γ Discount factor
π Policy
π∗ Optimal policy
π∗g Optimal policy over subgoals
π∗a,g Optimal policy over actions for subgoal g
rt Reward observed at time t
st State at time t
at Action taken at time t
g′ Forthcoming subgoal

V π(s) State-value function under policy π
Qπ(s, a) Action-value function under policy π
V ∗(s) Optimal state-value function
Q∗(s, a) Optimal action-value function
Q(s, a|θ) Parametrized action-value function
Q(s, a|θ, g) Parametrized action-value function given subgoal g
L(θ) Loss function for parameter set θ

Q∗(st, at) = E[rt+1 + γmax
at+1

Q(st+1, at+1|θt)] (5)

DDQN is a widely used parameter optimization method
for loss function L(θ) minimization and weight update in
Q-learning procedure. DDQN uses two DNNs where at each
iteration a target-value Yt = Q∗(st, at) and a prediction-
value Qt = Q(st, at|θt) are calculated with separate DQL
processes. Using Huber loss as the loss function L(θ) with
a constant c and learning-rate α, DDQN weight update
procedure can be expressed as

L(θt) =

{
1
2 (Yt −Qt)2 |Yt −Qt| ≤ c
c|Yt −Qt| − 1

2c
2 o/w

(6)

θt+1 = θt + α
δL(θ)

δθ
(7)

C. Hierarchical Deep Reinforcement Learning

HRL uses DQL in a two-stage hierarchy incorporating a
meta-controller and a controller. High-level meta-controller
chooses a subgoal gt ∈ G given state st and estimates optimal
action-value function Q∗1(st, gt) for an optimal policy π∗g
over subgoals. On the other hand, low-level controller takes
in state st and subgoal gt and estimates optimal action-value
function Q∗2(st, at|gt) for an optimal policy π∗a,g over actions
[14]. Using neural networks as non-linear function approx-
imators, value-functions can be represented as Q∗1(st, gt) =
Q1(st, gt|θ1) and Q∗2(st, at|gt) = Q2(st, at|θ2, gt). Result-
ing hierarchical learning process with temporal abstraction
can be expressed with the following Q-value functions

Q1(st, gt|θ1) = E
[ t+1+N∑
t′=t+1

rt′ + γmax
g′

Q1(st+1+N , g
′|θ1)

]
(8)

Q2(st, at|θ2, gt) = E[rt+1 + γmax
at+1

Q2(st+1, at+1|θ2, gt)]

(9)



where g′ is the forthcoming subgoal that is activated
at st+1+N and N is the number of time steps that takes
controller to achieve current subgoal g.

IV. APPROACH

In this section, we describe the HSS based opportunis-
tic RAN slicing architecture. Initially, we present a multi-
controller learning structure for modular behaviour planning
and RAN slicing in vehicular environment. Later on, we
explain the HSS algorithm based on hierarchically prioritized
experience replay and hybrid reward function techniques.
Followingly, we elaborate on a hybrid reward mechanism
for network utility and QoS performance analysis of the HSS
method during dynamic slice allocation.

A. Multi-Controller Learning for RAN Slicing

Proposed architecture consists of an HRL agent that uses
h-DQN algorithm for coordinating separate DQL policy
controllers, namely meta-controller and controller, as shown
in Fig. 2. Each controller uses a DDQN for the policy ap-
proximation process. High-level meta-controller consists of
an Option-Value Network (OVN) that computes a policy over
options. Option set assigned to the meta-controller represents
possible subgoals/options of slice allocation, where each sub-
goal is a V2X RAN slice of the NFV service. Meta-controller
periodically decides on a RAN slicing subgoal based on the
observed environmental state. On the other hand, an Action-
Value Network (AVN) operated at the low-level controller
computes a policy over actions. Each action represents an
inter-slice or intra-slice bandwidth allocation decision for
opportunistically managing resources among RSUs and/or
edge cloud VMs that are responsible for V2X functions.
Controller uses given subgoal alongside with environmental
state and response for iteratively computing a spectrum uti-
lization strategy and selecting an action. Using environmental
response for the controller actions, agent calculates reward
signals based on the QoS performance.

B. H-DQN based Soft Slicing (HSS) Algorithm

Algorithm 1 is executed for learning a policy of optimal
bandwidth allocation between edge VMs during network
slice orchestration. At the beginning, possible V2X RAN
slice options are taken as the input by the multi-controller
process. Agent initializes DDQNs for option and action
policy calculation (Line 1). Training procedure is iteratively
carried out for the predetermined number of episodes (Lines
2-24). At each episode, DQNs iterate over state observations
and optimize parameters using stochastic gradient descent
at different temporal scales (Lines 3-23). Meta-controller
uses OVN for selecting the utility maximizing slice type
at every subgoal selection period (Lines 4-8). However,
with ε-greedy policy, a random option is selected with
the exploration probability (ε1) for higher expected utility
detection (Line 8). AVN receives subgoal and calculates the
bandwidth allocation action for expected utility maximization
(Line 9). Similarly, an ε-greedy procedure is followed by the
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Figure 2: Multi-controller hierarchical RL agent architecture
for option-based dynamic RAN slicing

controller (Line 10). Agent calculates received reward signals
for the controllers using environmental response (Lines 11-
12). Upon receiving the upcoming state, at every time-step,
a controller experience eA is stored in the controller replay
memory D2 (Lines 13-14). In case of sufficient experiences,
greater than a predetermined threshold ThsampleA , controller
samples experiences from the replay memory D2 for training
on decorrelated samples (Lines 15-16). Followingly, meta-
controller calculates cumulative extrinsic reward for the
current subgoal and environmental state gets updated (Lines
17-18). Experience replay procedure is also executed by
the meta-controller in case of subgoal termination. Meta-
controller stores and samples experiences at a different
temporal scale based on the subgoal completion frequency
(Lines 19-22). At the end of each episode, trained weights
of agent prediction networks {QpredO ,QpredA } are transferred
to {QtrgtO ,QtrgtA } for target network updates (Lines 23-24).

C. Hybrid Reward Mechanism for HSS

In order to satisfy diverse QoS requirements of 5G ap-
plications and assess the performance of controller resource
allocation strategies, we develop a hybrid reward mechanism
using AoI, service delay and throughput metrics. Reward
function of the policy controller for a given subgoal and/or
slice i is calculated with the following

Ri(st, at, st+1) =
F∑
f=1

(βi1AoI
i
f + βi2

1

µ̄f i − λ̄f
i
) + βi3Th

i
t

(10)
where βij represents weight of the metric j at slice i, AoIif

is the time elapsed since generation of the slice i content f ,
Thit is the slice i throughput at time t and 1

µ̄f
i−λ̄f

i is the

service delay where µ̄f
i is the average service rate to the

vehicles and λ̄f
i is the average arrival rate of content file



Algorithm 1: h-DQN based Soft Slicing (HSS)
Input: G ←− set of subgoals(V2X RAN slices)
Data: {D1,D2} : experience replay memories,

{θ1, θ2} : controller parameters
1 Initialize prediction and target networks for option

and action calculation { QpredO ,QtrgtO ,QpredA ,QtrgtA }
2 for each episode Ei | i = {1,...,num episodes} do
3 for each state st ∈ Ei do
4 if {t == kN | k = {0, ...,K}} then
5 Initialize Rext ←− 0
6 Initialize sinit ←− st
7 Compute g = QpredO .get subgoal(st)
8 g ←− random(ε1)

9 Compute at = QpredA .get action(st, g)
10 at ←− random(ε2,g)
11 Compute rext = QpredO .get reward(st, at, g)

12 Compute rint = QpredA .get reward(st, at, g)
13 Get next state st+1

14 Store D2 ←− eA = 〈st, at, rint, st+1, g〉
15 if |D2| > ThsampleA then
16 Compute

QpredA .updateWithReplay(L2(θ2, i),D2)

17 Update Rext+ = rext
18 Update st ←− st+1

19 if g is terminated then
20 Store D1 ←− eO = 〈sinit,Rext, st+1, g〉
21 if |D1| > ThsampleO then
22 Compute

QpredO .updateWithReplay(L1(θ1, i),D1)

23 Update QtrgtO

weights←−−−−− QpredO

24 Update QtrgtA

weights←−−−−− QpredA

f to the RSU cache. Overall, reward value for OVN can be
calculated as the average of reward signals from all RAN
slice options using

ROVNt =
1

Nslice

Nslice∑
i=1

Ri(st, at, st+1) (11)

V. SIMULATIONS

A. Simulation Setup

Simulation results of spectrum decision methods have been
obtained using numerical computation library TensorFlow,
open-source neural-network library Keras and numeric com-
puting environment MATLAB. HSS uses two-level policy
controller hierarchy consisting of different Feed-Forward
Network (FFN) architectures with varying hidden layer sizes,
as presented in Table II. Similarly, non-hierarchical actor-
critic DRL architecture, a DDQN, has been implemented for

performance comparison. As a traditional bandwidth utiliza-
tion approach, slotted-Aloha protocol have been used. On
the other hand, myopic bandwidth allocation based Whittle
index policy was preferred as a model-based RL approach
for optimal policy computation [16].

Table II: Hyperparameters for DRL

Hyperparameter Value
Meta-Controller FFN 20-12-5

Controller FFN 20-15-15-12-12-10-8-5
Non-hierarchical DRL FFN 20-15-15-10

Number of episodes 100
Batch size B 10
Memory size 2000

Learning rate α 0.001
Discount factor γ 0.95
Exploration rate ε 0.7 −→ 0.01

Epsilon decay 0.997
Loss function Huber

Optimizer Adam

For the road traffic simulation, a one-dimensional road
consisting of unidirectional and/or bidirectional lanes have
been considered similar to the work in [6]. Distribution
of cache-enabled vehicles has been designed as a Poisson
Point Process (PPP) whereas RSU has been modeled as a
queuing system with a shared processor and limited cache
availability. Available bandwidth of the RSU is uniformly
distributed among VMs that are responsible for serving each
slice instance at the network edge. Each file f from slice i
has been randomly assigned a request probability qif , where∑Nslice

i=1

∑F
f=1 q

i
f = 1 and a PPP was used for modeling

vehicle requests.
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Figure 3: HSS versus other slice management methods

B. Simulation Results

We first present the simulation results obtained under
various slice management algorithms. Fig. 3 displays cu-
mulative reward per episode obtained by a single slice
allocation agent operating under HSS, non-hierarchical DQL,
Whittle index and slotted-aloha algorithms. We observe that
HSS provides sample-efficient convergence compared to non-
hierarchical DQL approach due to its modular behaviour



planning architecture that optimizes pursuing subsequent
tasks. Furthermore, better stability of bandwidth utilization
decisions are observed. Therefore, higher utility values are
perserved in consequent episodes. On the other hand, both
model-agnostic online-learning methods, actor-critic DQL
and HSS, outperform model-based RL, namely Whittle index
policy, and slotted-aloha protocol based slicing decisions.
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Fig. 4 shows the comparison of model-free DRL ap-
proaches, namely HSS and non-hierarchical actor-critic DQL,
in terms of average delay and AoI performance throughout
the continuing time-slot iterations in an episode. As the num-
ber of time slots and transmissions increases, average delay
of traditional DQL-based approach oscillates with a stable
period while delay obtained from HSS increases. Similarly,
AoI observed from transmitted packets under HSS regime
tends to increase with the episode duration. Contrarily, non-
hierarchical policy controller reaches stabilized AoI statistics
at data transmissions. Multiple controllers utilized in HSS
method operate at different temporal scales. While the meta-
controller that is responsible for slice and subgoal selection
has a less frequent decision making strategy, non-hierarchical
DQL operates with a flat architecture that is capable of slot-
based decision making. Therefore, transmission decisions
under HSS result in larger delays and increasing AoI ob-
servations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present hierarchical deep reinforcement
learning based dynamic RAN slicing policy control as a
model-agnostic online-learning method for 5G V2X com-
munication systems. Initially, h-DQN based slicing approach
HSS has been proposed based on the hybrid reward mecha-
nism for satisfying diverse QoS demands. Later on, we com-
pared performance of HSS with slotted-aloha and traditional
model-free and model-based RL algorithms. We observe that
pursuing task-decomposition based subgoal policies using
hierarchical HSS architecture resulted in better utilization
of bandwidth resources with increased stability and sample-
efficiency. On the other hand, non-hierarchical DQL had a
more stable delay and AoI performance due to its time-slot
based decision making approach. In our future work we aim

to focus on stabilizing delay performance of HSS using multi-
agent cooperative learning techniques.
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