

## Influence of infrastructure antenna location and positioning system availability to open-road C-V2X supported Automated Driving

Xiaoyun Zhang Dynniq

IEEE 5G Virtual Summit, IEEE 5G for CAM, 11-12/05/2021

# Table of Content



- Paper Motivation
- System architecture of LTE-V2X enabled automated driving
- Problem definition and methodology
- Experimental results discussion
- Preliminary conclusions and Outlook

## Paper motivation



- Fast rise of automated driving (AD)
- AD uses on-board sensing systems; C-V2X improves perception range of AD
- 5G-Drive projects aims that are presented in this paper
  - ▶ To study the trial V2X experiments with 3GPP Rel-14 conformed LTE-V2X devices on open-

roads automated driving in Finland

- To jointly trial with 5G Large-scale project on two joint V2X use cases
- To examine the potential of low latency and influence on positioning system of LTE-V2X

communication in terms of road safety benefits to AD

# System architecture of LTE-V2X enabled automated driving



Trial architecture and setup description



# Problem definition and methodology



- Performance of LTE-V2X challenge  $\leftarrow \rightarrow$  impact factor: Antenna height
  - Test route ca. 350 meter long, approaching a four-way intersection, pedestrian crossings
  - ▶ 5.9 GHz Qualcomm<sup>®</sup> C-V2X DPs, one on roadside, one in the vehicle
  - Three different antenna height installations on trailer: 1.4 meter, 2.8 meter and 3.8 meter

- Automated vehicle positioning issue Error correction challenge
  - Densely-built area in Espoo, small forests, and big and underground parking hall (tens of meter underground inside bedrock)
  - Equipped test-lab vehicle (Integrated RTK device and LTE-V2X OBU; LTE-V2X RSU was installed at stationary position at the entry of parking hall)

# **Results discussion**



- ▶ Performance of LTE-V2X 22<sup>nd</sup> Oct 2020
  - Assumption: Antenna height can affect LTE-V2X average latency
    - ▶ Trial design: increase antenna height on RSU from 1.4 ~ 3.8 meters



| Antenna height in RSU [m] | Message size [bytes] | Latency mean | Jitter [ms] | Maxdist | Packet Loss Rate |
|---------------------------|----------------------|--------------|-------------|---------|------------------|
|                           |                      | [ms]         |             | [m]     | [%]              |
| 1,4                       | 250                  | 35           | 9           | 385     | 32               |
| 1,4                       | 750                  | 33           | 12          | 311     | 12               |
| 2,8                       | 250                  | 30           | 9           | 368     | 19               |
| 2,8                       | 750                  | 32           | 9           | 288     | 11               |
| 3,8                       | 250                  | 26           | 8           | 373     | 9                |
| 3,8                       | 750                  | 27           | 7           | 305     | 7                |

# **Results discussion**

Enhanced accurate positioning of C-V2X AD

- Trial design
- Baseline



### Measurement 4 : Location accuracy



#### • Enhancement results

- ▶ RSU and OBU communication is extremely limited without GNSS coverage.
- With GNSS repeater, possible to get satellites signal underground (validation still to be done).

# **Conclusions and Outlook**



- Preliminary conclusions
  - Antenna height has significant influence of availability of C-V2X devices
  - ▶ High frequencies (5,9 GHz) are very sensitive under non-light-of-sight (7%~32%)
  - The enhanced accurate positioning showed limitation when GNSS signals are unavailable or unstable.
- Outlook
  - ► A few challenges in C-V2X roll-out
  - More studies on the performance of C-V2X (simulation supports assumptions)
  - Measurements of Low latency are still not optimal; C-V2X's potential awaits full discovery

Thank you for your attention!



Find us at www.5g-drive.eu

Twitter: @5GDRIVE

#### Acknowledgment:

The research conducted by 5G-DRIVE receives funding from the European Commission H2020 programme under Grant Agreement N°814956. The European Commission has no responsibility for the content of this presentation.